
HPC Undergraduate Curriculum

Development at SDSU using SDSC Resources

Education/Technical Paper (#704) for SC'95

Final revision August 15, 1995

Kris Stewart, Associate Professor

Mathematical Sciences Department

San Diego State Univeristy

and

Computational Science Curriculum Coordinator

San Diego Supercomputer Center

(stewart@cs.sdsu.edu)

© Copyright 1995 by ACM, Inc.

Keywords

Undergraduate Curriculum Development, HPC, High Performance Computing, Education, HPC

Education

Abstract

Results from the development and teaching of a senior-level undergraduate multidisciplinary

course in high performance computing are presented. Having been taught four times, there are

several "Lesson Learned" presented in this paper. Help from the technical staff at the San Diego

Supercomputer Center and support from the National Science Foundation has been instrumental

in the evolution of this course. The work of faculty at other universities has influenced the

author's courses and is gratefully acknowledged. A subsequent sophomore level course was

developed at SDSU and has become part of a voluntary, cooperative program, Undergraduate

Computational Science and Engineering.

Copyright 1995 by the Association for Computing Machinery, Inc. (ACM).

Introduction

San Diego State University (SDSU) is a member of the San Diego Supercomputer Center

(SDSC) Consortium. This has provided modest amounts of time on the succession of machines

available at the Center, from Cray X/MP to Cray Y/MP to the current Cray C90. The author has

also been able to attend workshops at SDSC on a regular basis. Access to this facility and its

technical staff has been instrumental for the development of the high performance computing

course, CS 575 Supercomputing for the Sciences and Engineering.

http://delivery.acm.org/10.1145/230000/224209/KRIS_BIO.HTM
http://delivery.acm.org/10.1145/230000/MISC/COPYRT.HTM

CS 575 is a senior-level, undergraduate course at SDSU. The course was taught twice in 1991

and 1992 as an experimental course, then received the campus approvals to be listed in the

1992/93 Undergraduate Catalog and has been taught nearly every spring semester since then.

There have been several follow-on activites that the author has participated in directly related to

the development and teaching of this course which are summarized in this paper:

High Peformance Computing Curriculum

gives an overview of the course focussing on the developmental lectures, computational

assignments, writing assignments and skills developed by students enrolled in the course

Lessons Learned

discusses how the course has evolved over the years of teaching it and the author's

rationale for the changes

Evolving Curriculum at SDSU

discusses another course developed at SDSU to introduce students to computational

programming. The need for this course became apparent from teaching CS 575.

Cooperative Programs

lists and briefly describes several Web oriented programs to assist teachers in developing

and sharing curricula in High Performance Computing

Acknowledgements

References

High Peformance Computing Curriculum

Catalog Description:

CS 575 - Supercomputing for the Sciences
Interdisciplinary course intended for all science and engineering majors.

o Advanced computing techniques developed for supercomputers

o Overview of architecture, software tools, scientific computing and communications

o Hands-on experience using supercomputers

Prereq.: Extensive programming background in Fortran or C.

Overview Computational science methods and techniques are presented to students in the CS

575 course through lecture and enhanced through their computing projects. Each student selects

a science based problem that is of interest to them, tailoring it to their particular academic

background. The students become familiar with the computational characteristics of their

program by running it on the educational mainframe machine at SDSU, a SUN Sparc 10. The

student writes a formal report describing the problem, the performance of their code and the

implications of their results on the "science" of their problem. Once students are familiar with

their own science projects, they port the code to the Cray, extend the problem and write a final

report on the "science" as well as the "performance" of their project on the Cray compared to Sun

Sparc 10

The two most dramatic changes incorporated in the Spring 1995 course were:

New textbook: High Performance Computing by Kevin Dowd.

More information on this excellent paperback book is given by:

Local Link to HPC text

http://gnn.com/gnn/bus/ora/item/hpc.html (Web Link)

Extensive use of the WWW and graphical Web Browsers

Course handouts distributed via Web cs575.htm (local link)

http://www.stewart.cs.sdsu.edu (Web link)

SDSC makes all documentation (including the Cray User Guide) available via the WWW

http://www.sdsc.edu/Services/Consult/Cray/CUG/CUG_intro.html (Web link)

so it has became essential to incorporate more network communications training for students in

the course.

Electronic mail had always been used as the mechanism for students to ask questions outside of

office hours. Electronic mail was used to distribute handouts from the instructor. It was the

preferred mechanism for students to submit their computational experiments along with

accompanying reports. In Fall 1994, SDSU's computer center established two general labs of

Xterminals (capable of Xwindow display). For the first time on the SDSU campus, this gives

undergraduates access to the graphic interface to the Internet.

1. Cray architecture

The intent is to gain an appreciation for High Performance Computing and to use the

Cray C90 as a sample platform. Students come to understand the subtleties of the C90's

design from a programmers point of view with the goal to understand "why" the Cray

C90 is fast and how to quantify this. Most of these concepts transfer easily to other HPC

platforms, even massively parallel platforms since one of the first steps in parallelizing a

code is to find the vectorizable loops.

Another excellent source is available from Cray Research Inc. TR-OPT 1.0 (E) CF77

and Cray Standard C Optimization for Parallel-Vector Systems. An excellent, Cray-

specific training report covering the Fortran and C compilers. This document provides

code examples, diagrams, and explanations of crucial vectorization topics (and the

conditions that inhibit the compiler), memory organization, performance tools, common

optimization techniques, and much more. More information is available online for Cray

from http://www.cray.com, WWW link to Cray Research Inc.

2. Communications

The course covers the resources available through the Internet, including:

o Communicating with peers and instructor (via e-mail)

o Using FTP to transfer programs between machines (a crude look at heterogeneous

computing)

o Using NCSA Mosaic or Netscape as Graphical Interfaces to the Wide World

Web. Using lynx as a text based interface to WWW (over slow phone lines or

when without high performance graphics display devise).

http://delivery.acm.org/10.1145/230000/224209/HPC.HTM
http://gnn.com/gnn/bus/ora/item/hpc.html
http://delivery.acm.org/10.1145/230000/224209/CS575.HTM
http://www.stewart.cs.sdsu.edu/cs575.html
http://www.sdsc.edu/Services/Consult/Cray/CUG/CUG_intro.html
http://www.cray.com/

3. Monitoring CPU usage

At SDSU, accounts issued to students in typical computer courses are limited only by the

amount of allowed file space. When students run programs on the Cray, they will have a

fixed amount of CPU time to work with and monitoring a finite resource such as this is a

new skill to develop. To aid with this, students are given a first programming project to

run on a mainframe at SDSU and introduce the concept of accounting using crude UNIX

timing tools (e.g., dtime). During the semester, students are reminded that they must

complete their course projects on the Cray without exceeding their CPU allocations. The

more sophisticated timing and resource monitoring tools on the Cray can be used to

ensure that the student projects do not use up more time than they are allocated for the

semester (which is typically 5 to 10 minutes of Cray CPU time for each student).

4. Computer ethics/responsibility

Students in the course choose between four computer-related scenarios and write a one-

page essay discussing the behaviors of the individuals involved. The essays are graded on

a pass/fail basis (only essays that show a lack of thought or effort "fail"). This is followed

by a week long lecture and discussion in class of computer responsibility and the

changing nature of the information intensive world we now live in. The goal is to start a

dialog between the instructor and students and for the instructor to gain a better

understanding of the students' attitudes concerning computer-related issues.

5. Writing

Writing is a key component to this Computer Science course. Most of the students have

no problem with the computer ethics essay described above, but they typically have had

little experience in writing a technical report. Therefore, an initial computational

experiment (problem statement given in the next section) is assigned that consists of the

following components:

1. Take a code given by the instructor (in Fortran or C) and modify it to include calls

to the UNIX timer, dtime

2. Examine the output from your code to gain an understanding of the measured

performance.

3. Write a report giving and justifying your conclusion on performance.

This is followed by the main computational experiment which is chosen individually by

each student depending on their interests and consists of:

4. Solve a science-oreinted problem on a campus mainframe and document the

mainframe's performance in a written report.

5. Solve the same problem on the Cray.

6. Compute an enhancement of the problem on the Cray and document the Cray's

performance relative to the campus mainframe in a written report.

Instructor feedback after reading the document from the first assignment greatly

enhanced the organization and content of the final document.

6. Computational Experiments

As the lecture material was covered, students worked on their first two programming

assignments. The goal was to develop a feeling for timings on the SDSU mainframe

compared to accuracy of approximation schemes. Students were asked to assess how

much it costs (measured in CPU time) to get a good answer (measured by true error).

Since most students had little numerical analysis background, the instructor provided the

original code for the "First Program" problem in Fortran and C, and the students were

instructed to identify the crucial loops and insert the appropriate timing calls.

o First Program 1991 Course

Run and time a Fortran code that solves a two-point boundary value problem

y''(t) + \pi^2 y(t) = 0 ; y(0) = 0 y(1/2) = 1

via finite differences. The given true solution is y(t) = sin (\pi t)

The dimension of the approximation should be varied and you should identify and

time the separate pieces of the solution process. You should document the

performance of the SDSU mainframe on this problem and discuss the sensitivity

in accuracy and timing.

NOTE: This proved to be a somewhat confusing problem for students new to

numerical analysis. There are too many sources of error. As the finite difference

grid is refined, the approximation is more accurate. But the linear system that is

solved becomes more poorly conditioned, thereby magnifying round-off error.

o First Program 1992 Course (and subsequent offerings)

Consider the linear system A x = b, where the elements of N by N matrix A is

given by a[ij] = 1/(i+j-1) (the notorious Hilbert matrix). The right-hand side, b,

will be chosen so that the true solution, x, will have all components equal to 1.

You should solve this linear system for various values of N and observe the error

incurred (by computing true error, since we know the true solution should have xi

= 1) and the performance (measured by the elapsed CPU time) for the LU

decomposition and subsequent solve.

o Second Computational Experiment (Main Project)

Science-oriented Program to be run on SDSU Mainframe and subsequently on the

Cray C90.

The main project is crucial to this course. Students will use the Cray to run this

project, and the instructor did not want them to squander Cray resources before

they become familiar with their particular science problem. Students are allowed

to pick from a selection of problems provided by the instructor, or they can solve

a scientific problem from their particular backgrounds or work environments

(with approval of the instructor).

Good sources for problem statements are:

 Computing Applications to Differential Equations: Modeling in the

Physical and Social Sciences, by J.M.A. Danby; Reston Publishing,

1985.

 Numerical Methods and Software by Kahaner, Moler and Nash;

Prentice-Hall Publishers, 1989.

Topics to be covered in your report:

3. Your write-up should have a self-contained statement of the problem. The

reader should not have to read your code to find out what equations you

are working with, or what the specific problem is that you are solving.

4. Give a complete reference to where the problem came from.

5. Define your measure of work so that comparisons can be made when you

run on the Cray. You can't talk about "faster" or "better" without a specific

measure of performance.

6. Discuss conclusions drawn from the science of the problem itself. What is

the "science" story revealed by the original problem? Why was this

problem solved?

7. Discuss conclusions drawn from the performance of your code for solving

the problem.

8. You should carefully organize the results. A summary of pertinent results

for both the "science" of the problem and the "performance" of the

program should be presented. Optionally, include an appendix for more

detailed results.

Lessons Learned From Teaching CS 575

The writing assignments for CS 575 became more focussed after teaching the course the

first time. Students needed to be taught how to put together a technical document as well

as given hints on how to manage the large amounts of data that their computational

experiments tended to produce. Giving students the specific list of items to cover in their

reports (above) helped focus the writing.

Care had to be taken with the background that could be assumed for the students in the

course. Although it would be beneficial to the instructor to have a Numerical Analysis

prerequisite, it was felt that this would significantly reduce the number of enrolled

students. Instead the attitude of the instructor is to cover in lecture the specific topics

needed such as behavior of round-off error, sensitivity for solving linear systems of

equation as revealed by the estimate of the condition number and the vector-oriented

solution of Initial Value Problems using a simple Runge-Kutta-Fehlberg technique (with

motivation from examining Euler's Method in a vector formulation). See the NOTE

above from the first programming assignment in the 1991 course. Too many sources of

errors along with being new to the behavior of floating point arithmetic was too much for

the students.

Although the language of choice for the majority of current HPC users is still Fortran,

undergraduate students have a strong preference for C. The Cray Training Report (TR-

OPT 1.0(E)) CF77 and Cray Standard C Optimization for Parallel-Vector Systems)

proved invaluable for examples in lecture since it presents all examples in both Fortran

and C and students could then choose to focus on the example language they were most

comfortable with.

The introductory programming projects were made available in Fortran as well as in C

coded drivers that interface and call the Fortran subroutines. These codes are available on

line along with the lecture notes from the course, as mentioned previously.

The programming requirement for CS 575 tended to encourage computer science

students to enroll in the course, but discouraged students in other science disciplines to

enroll. After speaking with faculty in the other departments, it was apparent that a course

introducing programming with an orientation towards scientific problem solving was

needed. This is a different point of view than the beginning programming language

course for computer science majors which at SDSU uses Pascal and leads to the data

structures course.

Evolving Curricula at SDSU

A new course was designed, CS 205 Introduction to Computational Programming.

This course appeared in the 1994/95 SDSU catalog and was taught by Stewart in Fall

1994. This is a sophomore level course whose prerequisite is one year of calculus. The

computing environment used is MATLAB from MathWorks, Inc. The C programming

language is introduced via the MATLAB script writing capability. The process of

conceptualizing problems in vector notation is natural for MATLAB, providing a smooth

transition to the vector-oriented computing highlighted in the CS 575 Supercomputing

course. Computer graphics are used in all class examples and computational experiments

since this is an integral part of MATLAB. The recently released Student Edition

MATLAB Version 4 provides students with an individual copy of the software that runs

on their home Macintosh or IBM/PC that is equivalent to the network version available

on the instruction computers on campus. This course will be offerred Fall 1995 at SDSU

and the materials will be made available during this time.

The rapidly evolving world of undergraduate curriculum development in high

performance computing benefits from multidisciplinary work. At SDSU, there has been a

great deal of cooperation with the Departments of Mathematical Sciences, Physics (which

now has an undergraduate degree program in Computational Physics), Chemistry,

Geology, Astronomy and more. An interesting source that documents academic programs

in Computational Science is provided by Dr. C. D. Swanson at Cray Research Inc.

http://www.cray.com/PUBLIC/ind/univ/Comp_Sci_Paper.html (WWW link)

Nation-wide Cooperative Programs

The author has been fortunate to be involved with educational activities that can be

directly related to the curriculum development of CS 575. The URLs are provided in this

paper for those who have access to the Wide World Web. These are ancillary sources that

readers are encouraged to investigate, but are not crucial for this presentation therefore no

local copy will be provided here.

Department of Energy's Undergraduate Computational Science and Engineering (UCES)

http://uces.ameslab.gov/UCES/ (WWW link) This is a voluntary group of faculty who

meet on roughly a quarterly basis to discuss and disseminate curricula materials. The

program is coordinated by Dr. Tom Marchioro of Ames Laboratory. UCES presented

their first public viewing of the archive of curricula materials at Supercomputing '94 in

Washington, D.C. The CS 205 Introduction to Computational Programming course at

SDSU discussed above has been included in the UCES archive.

UCES goes further than simply promoting discussions and sharing materials. In 1994 an

award was establish to recognize and reward superior contributions to the field of

computational sicence education. This award to both faculty and students was renewed

for 1995. UCES also publishes Computational Undergraduate Education, and electronic

magazine showcasing interesting developments in the field.

High Performance Scientific Computing program from the University of Colorado,

Boulder

http://www.cs.colorado.edu/courses/materials.html (WWW link) In 1991, the author was

fortunate to attend one of the summer workshops presented at the University of Colorado,

Boulder by Dr. Lloyd Fosdick and Dr. Elizabeth Jessup. An innovative year long

undergraduate course in High Performance Scientific Computing (HPSC) has been

developed there and the instructional materials (both lecture notes, tutorials and

laboratory exercises) are available via anonymous ftp or via their WWW site above.

Acknowledgements

I wish to acknowledge support from the San Diego Supercomputer Center for travel and

summer salary that has been crucial to allowing me to attend some very interesting

meetings for the past four years. My work in Computational Science Curriculum

Development began with the support from Dr. Rich Hirsh: "Undergraduate Curriculum

http://www.cray.com/PUBLIC/ind/univ/Comp_Sci_Paper.html
http://uces.ameslab.gov/UCES/
http://www.cs.colorado.edu/ftp/pub/HPSC/README.html

Development in Advanced Computing", NSF/DASC Research Grant with Dan Sulzbach

(PI), San Diego Supercomputer Center, 1990-93.

References

3. Cray Research Incorporated, TR-OPT (Rev. E) CF77 and Cray Standard C

Optimization for Parallel-Vector Systems http://www.cray.com (Web link)

4. Danby, J.M.A., Computing Applications to Differential Equations: Modeling

in the Physical and Social Sciences, Reston Publishing, 1985.

5. Dowd, K., High Performance Computing , O'Reilly Publishers, 1994,

http://gnn.com/gnn/bus/ora/item/hpc.html (Web link)

6. Fosdick, L. and Jessup, E., University of Colorado, Boulder, HPC Course

http://www.cs.colorado.edu/ftp/pub/HPSC/README.html (Web link) [contact

Dr. Lloyd Fosdick, fosdick@cs.colorado.edu or Dr. Elizabeth Jessup,

jessup@cs.colorado.edu]

7. Kahaner, D., Moler, C., and Nash, S., Numerical Methods and Software ,

Prentice Hall Publishers, 1989.

8. Marchioro, T.L., Department of Energy Undergraudate Computational Science

and Engineering Program (UCES) http://uces.ameslab.gov/uces/ (Web link)

[contact Dr. Tom Marchioro, tlm@ameslab.gov]

9. MathWorks Inc., publishers of MATLAB http://www.mathworks.com (Web link

for MATLAB)

10. SDSC Cray Users Guide

http://www.sdsc.edu/Services/Consult/Cray/CUG/CUG_intro.html (Web Link)

11. Stewart, K., CS 575 Supercomputing for the Sciences, Course at SDSU

http://www.stewart.cs.sdsu.edu/cs575.html (Web link) .

12. Stewart, K., CS 205 Introduction to Computational Programming, SDSU Course

http://www.stewart.cs.sdsu.edu/cs205.html (Web link)

13. MathWorks, Inc., The Student Edition of MATLAB, Version 4 User's Guide,

Prentice Hall, 1995

14. Swanson, C.D., Cray Technical Report on HPC Education Programs, Feb. 2,

1995, http://www.cray.com/PUBLIC/ind/univ/Comp_Sci_Paper.html (Web link)

[contact Dr. Swanson, cds@cray.com]

Permission to make digital or hard copies of part or all of this work or personal or

classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists,

requires prior specific permission and/or a fee.

SC '95, San Diego, CA

© ACM 1995 0-89791-985-8/97/0011 $3.50

http://www.cray.com/
http://gnn.com/gnn/bus/ora/item/hpc.html
http://www.cs.colorado.edu/ftp/pub/HPSC/README.html
http://uces.ameslab.gov/UCES/
http://uces.ameslab.gov/UCES/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.sdsc.edu/Services/Consult/Cray/CUG/CUG_intro.html
http://www.stewart.cs.sdsu.edu/cs575.html
http://www.stewart.cs.sdsu.edu/cs205.html
http://www.cray.com/PUBLIC/ind/univ/Comp_Sci_Paper.html

